Công thức tính khoảng cách từ điểm đến đường thẳng trong không gian – Kiến Thức Cho Người lao Động Việt Nam

Khoảng cách từ 1 điểm đến 1 đường thẳng trong không gian

Khoảng cách từ 1 điểm đến 1 đường thẳng trong khoảng trống được tính thế nào ? Bài viết dưới đây hướng dẫn các em 2 cách để tính khoảng cách từ 1 điểm đến đường thẳng. Các em cùng theo dõi nhé ! Nội Dung

  • 1

    Bạn đang đọc: Công thức tính khoảng cách từ điểm đến đường thẳng trong không gian

    KHOẢNG CÁCH TỪ ĐIỂM ĐẾN 1 ĐƯỜNG THẲNG TRONG KHÔNG GIAN

  • 2 CÔNG THỨC TÍNH KHOẢNG CÁCH TỪ 1 ĐIỂM ĐẾN 1 ĐƯỜNG THẲNG TRONG KHÔNG GIAN OXYZ
    • 2.1 1. TÍNH KHOẢNG CÁCH TỪ 1 ĐIỂM ĐẾN 1 ĐƯỜNG THẲNG TRONG OXYZ BẰNG CÁCH TÌM HÌNH CHIẾU
    • 2.2 2. TÍNH KHOẢNG CÁCH TỪ 1 ĐIỂM ĐẾN ĐƯỜNG THẲNG TRONG OXYZ BẰNG TÍCH CÓ HƯỚNG

Trong hình học mặt phẳng Oxy lớp 10 và hình học không gian Oxyz lớp 12 đều có dạng toán tìm khoảng cách từ điểm tới đường thẳng Δ cho trước. Đây là dạng toán tương đối đơn giản, bạn chỉ cần nhớ chính xác công thức là làm tốt. Nếu bạn quên có thể xem lại lý thuyết bên dưới, đi kèm với nó là bài tập có lời giải chi tiết tương ứng

Đánh Giá khoảng cách 1 điểm đến đường thẳng

Đánh Giá – 9.3
Đánh Giá – 9.7

9.5

100

Hướng dẫn khoảng cách từ 1 điểm đến 1 đường thẳng oke ạ !

User Rating: 4.65 ( 1 votes)

Trong hình học không gian Oxyz thường có dạng toán tìm khoảng cách từ điểm đến đường thẳng cho trước. Đây là một dạng toán khá đơn giản và phổ biến mà chỉ cần nhớ chính xác công thức và áp dụng vào giải toán dễ dàng. Hãy theo dõi bài viết này để tìm hiểu công thức tính khoảng cách từ 1 điểm đến đường thẳng nhé! Hãy tìm hiểu dưới đây với Mobitool nhé !

Video hướng dẫn tính khoảng cách từ một điểm đến đường thẳng

Hướng dẫn công thức khoảng cách từ điểm đến đường thẳng

Hãy khám phá thêm công thức khoảng cách từ điểm đến đường thẳng mới nhất dưới đây :

1. Điểm là gì?

Điểm trong khái niệm toán học đơn thuần được thừa nhận như một khái niệm xuất phát để phong cách thiết kế kiến thiết xây dựng môn hình học, được tưởng tượng là một thứ rất nhỏ bé, không có kích cỡ hay size bằng không .

2. Đường thẳng là gì?

Đường thẳng là một đường dài vô hạn, mỏng mảnh vô cùng và thẳng tuyệt đối .

3. Khoảng cách từ 1 điểm đến 1 đường thẳng trong không gian là gì?

Trong khoảng trống cho điểm A và đường thẳng Δ bất kể. Gọi điểm B là hình chiếu của điểm A lên đường thẳng Δ. Khi đó độ dài đoạn thẳng AB chính là khoảng cách từ điểm A lên đường thẳng Δ .

Công thức tính khoảng cách từ 1 điểm đến đường thẳng trong không gian

Khoảng cách từ điểm đến đường thẳng trong khoảng trống Nói cách khác, khoảng cách từ điểm đến đường thẳng trong khoảng trống là khoảng cách giữa điểm và hình chiếu của nó trên đường thẳng. Ký hiệu là d ( A, Δ ) .

4. Công thức tính khoảng cách từ một điểm đến đường thẳng

Công thức tính khoảng cách từ điểm đến đường thẳng

Công thức tính khoảng cách từ điểm đến đường thẳng

5. Cách tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng

Cách tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng

Cách tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng

Ví dụ:

Ví dụ về tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng

Ví dụ về tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng

Lời giải:

Lời giải của ví dụ trên

Lời giải của ví dụ trên

6. Cách tính khoảng cách giữa 2 điểm

Cách tính khoảng cách giữa 2 điểm

Cách tính khoảng cách giữa 2 điểm

Ví dụ: Trong mặt phẳng Oxy, cho điểm A (1;2) và điểm B(-3;4). Tính độ dài đoạn thẳng AB.

Lời giải:

Lời giải của ví dụ trên

Lời giải của ví dụ trên

7. Bài tập tính khoảng cách từ một điểm đến một đường thẳng

Bài 1: Cho một đường thẳng có phương trình có dạng Δ: – x + 3y + 1 = 0. Hãy tính khoảng cách từ điểm Q (2;1) tới đường thẳng Δ.

Lời giải:

Lời giải của bài tập 1

Lời giải của bài tập 1

Bài 2:

Bài tập 2

Bài tập 2

Lời giải:

Lời giải của bài tập 2

Lời giải của bài tập 2

Bài 3:

Bài tập 3

Bài tập 3

Lời giải:

Lời giải của bài tập 3

Lời giải của bài tập 3

Bài 4: Đường tròn (C) có tâm là gốc tọa độ O(0; 0) và tiếp xúc với đường thẳng (d): 8x + 6y + 100 = 0. Tính bán kính R của đường tròn (C).

Lời giải:

Lời giải của bài tập 4

Lời giải của bài tập 4

Bài 5: Tính Khoảng cách từ giao điểm của hai đường thẳng (a): x – 3y + 4 = 0 và (b): 2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 16 = 0.

Lời giải:

Lời giải của bài tập 5

Lời giải của bài tập 5

Bài 6: Cho hai điểm A( 2; -1) và B( 0; 100) ; C( 2; -4) .Tính diện tích tam giác ABC?

Lời giải:

Lời giải của bài tập 6

Lời giải của bài tập 6

Bài 7:

Bài tập 7

Bài tập 7

Lời giải:

Lời giải của bài tập 7

Lời giải của bài tập 7

8. Một số lưu ý về tính khoảng cách từ điểm đến đường thẳng

– Cần xác lập được khái niệm khoảng cách từ điểm đến đường thẳng là như thế nào. – Đưa phương trình đường thẳng về dạng tổng quát trước khi vận dụng công thức tính khoảng cách từ điểm đến đường thẳng. – Nên sử dụng máy tính cầm tay để trọn vẹn hoàn toàn có thể tương hỗ tính khoảng cách từ điểm đến đường thẳng một cách nhanh gọn và đúng chuẩn nhất .

Sử dụng máy tính cầm tay để tính khoảng cách từ điểm đến đường thẳng nhanh chóng

Sử dụng máy tính cầm tay để tính khoảng cách từ điểm đến đường thẳng nhanh gọn Xem thêm : Hướng dẫn lim căn bậc n của n Từ khóa tìm kiếm : khoảng cách từ điểm tới đường thẳng, công thức tính khoảng cách từ một điểm đến đường thẳng, công thức tính khoảng cách điểm đến đường thẳng, công thức tính khoảng cách từ 1 điểm đến 1 đường thẳng, công thức tính khoảng cách từ một điểm đến một đường thẳng, khoảng cách từ điểm đến đường thẳng oxyz, công thức tính khoảng cách giữa điểm và đường thẳng, tìm khoảng cách từ điểm đến đường thẳng, cách xác lập khoảng cách từ 1 điểm đến đường thẳng, công thức khoảng cách từ 1 điểm đến 1 đường thẳng, cách tính khoảng cách từ 1 điểm đến 1 đường thẳng, tính khoảng cách từ một điểm đến đường thẳng, tính khoảng cách điểm đến đường thẳng, tìm khoảng cách từ 1 điểm đến đường thẳng, khoảng cách từ 1 điểm đến 1 đường thẳng là gì, khoảng cách một điểm đến đường thẳng, khoảng cách 1 điểm đến 1 đường thẳng, khoảng cách từ một điểm đến một đường thẳng trong khoảng trống, công thức khoảng cách, khoảng cách 1 điểm đến đường thẳng oxyz, khoảng cách điểm đến đường thẳng oxyz, cách tính khoảng cách từ một điểm đến một đường thẳng, công thức tính khoảng cách 1 điểm đến đường thẳng, tính khoảng cách giữa điểm và đường thẳng, ct tính khoảng cách từ điểm đến đường thẳng, khoảng cách từ 1 điểm đến 1 đường thẳng trong oxyz, khoảng cách từ tâm đến đường thẳng, khoảng cách giữa 1 điểm và 1 đường thẳng, tính khoảng cách 1 điểm đến đường thẳng, khoảng cách từ 1 điểm đến đường thẳng trong oxyz, khoang cach tu diem den duong thang, khoảng cách giữa 1 điểm và đường thẳng, khoảng cách từ điểm đến đoạn thẳng, công thức khoảng cách điểm đến đường thẳng, công thức từ điểm đến đường thẳng, khoảng cách từ 1 điểm đến 1 đường thẳng trong oxy, gọi khoảng cách từ điểm i đến đường thẳng a là d, khoảng cahcs từ điểm đến đường thẳng, công thức tính độ dài từ điểm đến đường thẳng, công thức tính khoảng cách từ tâm đến đường thẳng, khoảng cách từ 1 điểm tới 1 đường thẳng, công thức tính khoảng cách từ điểm đến đường thẳng trong khoảng trống, khoảng cách từ điểm tới đường, cách tính khoảng cách từ một điểm đến đường thẳng, khoảng cách điểm tới đường thẳng, khoảng cách ký hiệu là gì, khoảng cách từ 1 điểm đến dường thẳng, kc từ điểm đến đt, khoảng cách từ một điểm tới một đường thẳng, công thức từ 1 điểm đến đường thẳng, khoảng cách từ điểm đến đường thẳng trong hệ oxyz, công thức tính khoảng cách từ 1 điểm đến đt, tính độ dài từ 1 điểm đến đường thẳng, khoảng cách từ 1 điểm đến 1 đoạn thẳng, công thức tính khoảng cách từ điểm tới đường thẳng, khoảng cách từ điểm đến một đường thẳng, tính khoảng cách từ điểm tới đường thẳng, khoang cach tu 1 diem den 1 duong thang, độ dài từ 1 điểm đến 1 đường thẳng, khoảng cách từ một điểm đến một đường thẳng là gì, tính khoảng cách giữa 1 điểm đến đường thẳng, phương trình khoảng cách, công thức tính khoảng cách d, khoảng cách từ từ, khoảng cách từ một điểm đến một đoạn thẳng, khoảng cách từ điểm đến đường thẳng oxy, khoảng cách từ một điểm đến 1 đường thẳng, tính khoảng cách d, tính khoảng cách từ điểm đến đoạn thẳng, công thức tiính khoảng cách, khoảng cách điểm và đường thẳng, công thức tính khoảng cách r, khoảng cách từ 1 điểm đến 1 vecto, tính khoảng cách trong khoảng trống oxyz, Tagscách tính khoảng cách từ 1 điểm đến 1 đường thẳng cách xác lập khoảng cách từ 1 điểm đến đường thẳng công thức khoảng cách từ 1 điểm đến 1 đường thẳng công thức tính khoảng cách điểm đến đường thẳng công thức tính khoảng cách giữa điểm và đường thẳng công thức tính khoảng cách từ 1 điểm đến 1 đường thẳng công thức tính khoảng cách từ một điểm đến đường thẳng công thức tính khoảng cách từ một điểm đến một đường thẳng Đời sống Hỏi đáp khoảng cách từ điểm đến đường thẳng oxyz khoảng cách từ điểm tới đường thẳng tìm khoảng cách từ điểm đến đường thẳng Wiki – Thuật ngữ

Khoảng cách từ 1 điểm đến 1 đường thẳng trong oxy

Cho đường thẳng Delta :

\[ax + by + c = 0\]

và điểm M0 ( x0, y0 ). Khoảng cách từ điểm đến đường thẳng được tính theo công thức :

\[d({M_0},\Delta ) = \frac{{\left[ {a{x_0} + b{y_0} + c} \right]}}{{\sqrt {{a^2} + {b^2}} }}\]

Ví dụ :

Tính khoảng cách từ điểm M(0; 3) đến đường thẳng Δ: x\cos α + y \sin α + 3(2 - \sin α) = 0 ?

Lời giải :

Khoảng cách từ điểm M(0; 3) đến đường thẳng Δ: x\cos α + y \sin α + 3(2 - \sin α) = 0 là:

d(M,\Delta ) = {{|0.cos\alpha + 3.sin\alpha + 3(2 - \sin \alpha )|} \over {\sqrt {\sin {\alpha ^2} + \cos {\alpha ^2}} }} = 6

1. Khoảng cách từ 1 điểm đến 1 đường thẳng trong mặt phẳng Oxy

Nếu biết phương trình đường thẳng d : ax + by + c = 0 và tọa độ điểm A ( x0 ; y0 ) thì khoảng cách từ điểm A tới đường thẳng d được xác lập theo công thứcUSD d \ left ( { M, d } \ right ) = \ frac { { \ left | { a { x_0 } + b { y_0 } + c } \ right | } } { { \ sqrt { { a ^ 2 } + { b ^ 2 } } } } $

Ví dụ: Trong hệ trục tọa độ Oxy, bạn hãy tính khoảng cách từ điểm M tới đường thẳng d, biết:

a ) M ( 3 ; 4 ) và x + y – 6 = 0 b ) M ( – 4 ; 2 ) và 2 x + y + 1 = 0 c ) M ( 2 ; 7 ) và 5 x – 6 x + 11 = 0L ời giảiKhi đã biết tọa độ và phương trình đường thẳng, ta vận dụng công thức ở trên : USD d \ left ( { M, d } \ right ) = \ frac { { \ left | { a { x_0 } + b { y_0 } + c } \ right | } } { { \ sqrt { { a ^ 2 } + { b ^ 2 } } } } $ a ) USD d \ left ( { M, d } \ right ) = \ frac { { \ left | { 1.3 + 1.4 – 6 } \ right | } } { { \ sqrt { { 1 ^ 2 } + { 1 ^ 2 } } } } = \ frac { { \ sqrt 2 } } { 2 } $ b ) USD d \ left ( { M, d } \ right ) = \ frac { { \ left | { 2. \ left ( { – 4 } \ right ) + 1.2 + 1 } \ right | } } { { \ sqrt { { 2 ^ 2 } + { 1 ^ 2 } } } } = \ sqrt 5 USDc ) USD d \ left ( { M, d } \ right ) = \ frac { { \ left | { 5.2 + \ left ( { – 6 } \ right ). 7 + 11 } \ right | } } { { \ sqrt { { 5 ^ 2 } + { { \ left ( { – 6 } \ right ) } ^ 2 } } } } \ approx 2,69 $

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Trang trước Trang sau

Bài giảng: Các dạng bài về khoảng cách, góc trong không gian – Cô Nguyễn Phương Anh (Giáo viên Tôi)

Quảng cáo

– Muốn tìm khoảng cách từ một điểm M đến đường thẳng d : có 2 cách sau :
+ Cách 1 : Tìm hình chiếu H của điểm đó đến d => MH là khoảng cách từ A đến d
+ Cách 2. công thức ( với u → là vectơ chỉ phương của d và M0 là một điểm thuộc d )

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

– Muốn tìm khoảng cách giữa hai đường thẳng chéo nhau d ( u → là vectơ chỉ phương của d và d đi qua M0 ) và d ’ ( ( u ‘ ) ⃗ là vectơ chỉ phương của d ’ và d ’ đi qua M0 ‘ ) ta làm như sau :
+ Viết phương trình mặt phẳng ( P ) chứa d và song song d ’
+ Khoảng cách giữa d và d ’ chính là khoảng cách từ điểm M0 ‘ đến mặt phẳng ( P ) d ( d, d ’ ) = d ( M0 ‘, ( P ) )
+ Hoặc dùng công thức :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Ví dụ: 1

Tìm khoảng cách của A(-2; 1; 3) đến đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. 2

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Quảng cáo

Hướng dẫn giải

Đường thẳng d đi qua B(0;1; -1) và có vectơ chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Vậy

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn B .

Ví dụ: 2

Cho mặt phẳng (P): 3x – 2y – z + 5 = 0 và đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Tính khoảng cách giữa d và ( P. )

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Hướng dẫn giải

Mặt phẳng (P) có vecto pháp tuyến Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Đường thẳng d có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
và đi qua điểm M0(1;7;3)

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Vậy d / / ( P. )

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn D .

Ví dụ: 3

Tính khoảng cách giữa hai đường thẳng

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. 1

Hướng dẫn giải

Cách 1 :

Đường thẳng d có vecto chỉ phương là: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Đường thẳng d’ có vecto chỉ phương là: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
.

– Gọi ( P. ) là mặt phẳng chứa d và song song với d ’. ( P. ) nhận vectơ pháp tuyến là

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

M0 ( 1 ; – 1 ; 1 ) thuộc d cũng thuộc ( P ) nên phương trình mặt phẳng ( P ) là :
– 1 ( x-1 ) – 2 ( y + 1 ) + 1 ( z-1 ) = 0 hay x + 2 y – z + 2 = 0
– d ’ đi qua M0 ‘ ( 2 ; – 2 ; 3 )

Vậy Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Cách 2 :
Ta có :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Vậy

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

chọn A.
Quảng cáo

Ví dụ: 4

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
và điểm A( -1; 2; 1). Tính khoảng cách từ điểm A đến đường thẳng d?

A.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Đáp án khác

Hướng dẫn giải

+ Đường thẳng d đi qua điểm M( 1; 0; – 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

=> Khoảng cách từ A đến đường thẳng d là :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn C .

Ví dụ: 5

Trong khoảng trống với hệ tọa độ Oxyz ; cho hai đường thẳng

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
. Xác định khoảng cách giữa hai đường thẳng đã

cho ?

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Tất cả sai

Hướng dẫn giải

+ Đường thẳng d đi qua A( 1;0; – 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Đường thẳng d’ đi qua B( 2; -1; 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

=> Khoảng cách giữa hai đường thẳng đã cho là :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn B .

Ví dụ: 6

Trong khoảng trống với hệ tọa độ Oxyz ; cho 3 điểm A ( 0 ; 1 ; 2 ) ; B ( – 2 ; 0 ; 1 ) và C ( 2 ; 1 ; – 3 ). Tính khoảng cách từ điểm A đến đường thẳng BC ?

A.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Đáp án khác

Hướng dẫn giải

+ Đường thẳng BC đi qua B( -2; 0;1) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
làm vecto chỉ phương

+ Ta có:Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

=> Khoảng cách từ điể A đến đường thẳng BC là :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn A .

Ví dụ: 7

Trong khoảng trống với hệ tọa độ Oxyz ; cho bốn điểm A ( 1 ; 2 ; – 1 ) ; B ( – 2 ; 1 ; 1 ) C ( 2 ; 1 ; 3 ) và D ( – 1 ; 0 ; 5 ). Tính khoảng cách hai đường thẳng AB và CD ? biết rằng ba điểm A, C và D không thẳng hàng .

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Hướng dẫn giải

+ Đường thẳng AB: đi qua A(1;2; -1) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
làm vecto chỉ phương

+ Đường thẳng CD đi qua C( 2; 1; 3) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
làm vecto chỉ phương.

+ Hai đường thẳng AB và CD có cùng vecto chỉ phương và điểm A không thuộc đường thẳng CD .
=> AB / / CD nên d ( AB ; CD ) = d ( A ; CD )

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn C .

Ví dụ: 8

Trong không gian với hệ tọa độ Oxyz; cho điểm A(-1; 0;2) và đường thẳng d:
Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
. Tìm m để khoảng cách từ A đến d là Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
?

A. m = – 1 hoặc m = ( – 2 ) / 3
B. m = – 1 hoặc m = 1/7
C. m = 1 hoặc m = – 1
D. m = 1 hoặc m = 1/7

Hướng dẫn giải

+ Đường thẳng d đi qua M( 2; 1; 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Ta có; Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Theo đầu bài ta có: d( A; d)= Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn B .

Ví dụ: 9

Trong không gian với hệ tọa độ Oxyz; cho điểm A( 1; m;2) và đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
. Tìm m để khoảng cách từ A đến đường thẳng d là 2?

A. m = 2
B. m = – 1
C. m = 3
D. m = – 4

Hướng dẫn giải

+ Đường thẳng d đi qua M( 1; 2; 0) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Để khoảng cách từ A đến d là 2 thì :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn A .

Câu 1:

Tìm khoảng cách của A( 1;-2; 1) đến đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. 2

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Hiển thị lời giải

Đường thẳng d đi qua B(2;0; -1) và có vectơ chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Vậy

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn B .

Câu 2:

Cho mặt phẳng (P): x + 2y – z + 1= 0 và đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
.
Tính khoảng cách giữa d và (P)

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Hiển thị lời giải

Mặt phẳng (P) có vecto pháp tuyến Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Đường thẳng d có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
và đi qua điểm M0 (1;0;3)

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Vậy d / / ( P )

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn C .

Câu 3:

Tính khoảng cách giữa hai đường thẳng

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Hiển thị lời giải

Đường thẳng d đi qua A( 2; -1; 1) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
.

Đường thẳng d’ đi qua B( 0; -2; 1) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Vậy

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn D .

Câu 4:

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
và điểm A( 0;-2; 3). Tính khoảng cách từ điểm A đến đường thẳng d?

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Đáp án khác
Hiển thị lời giải

+ Đường thẳng d đi qua điểm M( 0;1; -1) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Ta có; Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

=> Khoảng cách từ A đến đường thẳng d là :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn A .

Câu 5:

Trong khoảng trống với hệ tọa độ Oxyz ; cho hai đường thẳng

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
. Xác định khoảng cách giữa hai đường thẳng đã

cho ?

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Tất cả sai
Hiển thị lời giải

+ Đường thẳng d đi qua A( 1;0; 0) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Đường thẳng d’ đi qua B(0;1; 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

=> Khoảng cách giữa hai đường thẳng đã cho là :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn D .

Câu 6:

Trong khoảng trống với hệ tọa độ Oxyz ; cho hai điểm A ( 2 ; – 1 ; – 1 ) ; B ( 2 ; 3 ; 1 ). Tính khoảng cách từ điểm O đến đường thẳng AB ?

A.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Đáp án khác
Hiển thị lời giải

+ Đường thẳng AB đi qua A( 2; -1; -1) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
làm vecto chỉ phương

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

=> Khoảng cách từ điểm O đến đường thẳng AB là :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn A .

Câu 7:

Trong khoảng trống với hệ tọa độ Oxyz ; cho bốn điểm A ( 0 ; 0 ; 2 ) ; B ( 1 ; 2 ; – 1 ) C ( 2 ; 1 ; 3 ) và D ( 4 ; 5 ; – 3 ). Tính khoảng cách hai đường thẳng AB và CD ? biết rằng ba điểm A, C và D không thẳng hàng .

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

C.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Hiển thị lời giải

+ Đường thẳng AB: đi qua A(0;0; 2) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
làm vecto chỉ phương

+ Đường thẳng CD đi qua C( 2; 1; 3) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
làm vecto chỉ phương.

+ Hai đường thẳng AB và CD có hai vecto chỉ phương là cùng phương và điểm A không thuộc đường thẳng CD .
=> AB / / CD nên d ( AB ; CD ) = d ( A ; CD )

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn C .

Câu 8:

Trong khoảng trống với hệ tọa độ Oxyz ; cho điểm A ( 1 ; 1 ; 1 ) và đường thẳng

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
. Tìm m để khoảng cách từ A đến d là Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
?

A. m = – 1
B. m = 0
C. m = – 2
D. m = 1
Hiển thị lời giải

+ Đường thẳng d đi qua M( 1;2; 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Ta có; Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Theo đầu bài ta có: d( A; d)= Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn B .

Câu 9:

Trong không gian với hệ tọa độ Oxyz; cho điểm A(m; 0; 2) và đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
. Tìm m để khoảng cách từ A đến đường thẳng d là Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12
?

A. m = 2 hoặc m = 1
B. m = – 1 hoặc m = 0
C. m = 3 hoặc m = 0
D. m = – 4 hoặc m = – 1
Hiển thị lời giải

+ Đường thẳng d đi qua M( 1; 2; – 1) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

+ Để khoảng cách từ A đến d là 2 thì :

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau - Toán lớp 12

Chọn B .

Bài giảng: Các dạng bài về khoảng cách, góc trong không gian – Cô Nguyễn Phương Anh (Giáo viên Tôi)

Xem thêm các chuyên đề Toán lớp 12 có trong đề thi THPT Quốc gia khác :

Giới thiệu kênh Youtube Tôi

Trang trước Trang sau

Tính khoảng cách từ một điểm đến một đường thẳng

Trang trước Trang sau

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
Quảng cáo

+ Cho đường thẳng d: ax + by + c = 0 và điểm M ( x0; y0). Khi đó khoảng cách từ điểm
M đến đường thẳng d là: d(M; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

+ Cho điểm A ( xA ; yA ) và điểm B ( xB ; yB ). Khoảng cách hai điểm này là :

AB = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chú ý: Trong trường hợp đường thẳng d chưa viết dưới dạng tổng quát thì đầu tiên ta cần đưa đường thẳng d về dạng tổng quát.

Ví dụ 1: Khoảng cách từ điểm M( 1; -1) đến đường thẳng ( a) : 3x – 4y – 21 = 0 là:

A. 1
B. 2
C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Hướng dẫn giải

Khoảng cách từ điểm M đến đường thẳng ( a ) là :

d(M;a) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chọn D.

Ví dụ 2: Khoảng cách từ điểm O đến đường thẳng d: Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 1 là:

A. 4,8
B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
C. 1
D. 6

Hướng dẫn giải

Đường thẳng d: Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 1 ⇔ 8x + 6y – 48 = 0

⇒ Khoảng cách từ điểm O đến đường thẳng d là :

d( O; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 4,8

Chọn A.

Quảng cáo

Ví dụ 3: Khoảng cách từ điểm M(2; 0) đến đường thẳng
Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
là:

A. 2
B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Hướng dẫn giải

+ Ta đưa đường thẳng d về dạng tổng quát :

(d) : Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

⇒ Phương trình ( d ) : 4 ( x – 1 ) – 3 ( y – 2 ) = 0 hay 4 x – 3 y + 2 = 0 + Khoảng cách từ điểm M đến d là :

d( M; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 2

Chọn A.

Ví dụ 4. Đường tròn (C) có tâm là gốc tọa độ O(0; 0) và tiếp xúc với đường thẳng

(d): 8x + 6y + 100 = 0. Bán kính R của đường tròn (C) bằng:

A. R = 4
B. R = 6
C. R = 8
D. R = 10

Lời giải

Do đường thẳng d tiếp xúc với đường tròn ( C ) nên khoảng cách từ tâm đường tròn đến đường thẳng d chính là nửa đường kính R của đường tròn

⇒ R= d(O; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 10

Chọn D.

Ví dụ 5 . Khoảng cách từ điểm M( -1; 1) đến đường thẳng d: 3x – 4y + 5 = 0 bằng:

A. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
B. 1
C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Lời giải

Khoảng cách từ điểm M đến đường thẳng d là :

d( M; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
=

Chọn A.

Quảng cáo

Ví dụ 6. Khoảng cách từ giao điểm của hai đường thẳng (a): x – 3y + 4 = 0 và
(b):
2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 16 = 0 bằng:

A. 2√10
B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
D. 2

Lời giải

Gọi A là giao điểm của hai đường thẳng ( a ) và ( b ) tọa độ điểm A là nghiệm hệ phương trình :

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
⇒ A( -1; 1)

Khoảng cách từ điểm A đến đường thẳng ∆ là :

d( A; ∆) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chọn C

Ví dụ 7. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A( 1; 2) ; B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

A. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
B. 3
C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Lời giải

+ Phương trình đường thẳng BC :

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

⇒ ( BC ) : 3 ( x – 0 ) + 4 ( y – 3 ) = 0 hay 3 x + 4 y – 12 = 0 ⇒ chiều cao của tam giác kẻ từ đỉnh A chính là khoảng cách từ điểm A đến đường thẳng BC .

d( A; BC) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Chọn A.

Ví dụ 8. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3;1). Tính diện tích tam giác ABC.

A. 10
B. 5
C. √26
D. 2√5

Lời giải

+ Phương trình BC :

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

⇒ Phương trình BC : 2 ( x – 1 ) + 1 ( y – 5 ) = 0 hay 2 x + y – 7 = 0

⇒ d( A;BC) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= √5

+ BC = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 2√5

⇒ diện tích tam giác ABC là: S = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
.d( A; BC).BC = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
.√5.2√5 = 5

Chọn B.

Ví dụ 9: Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d1 : 4x – 3y + 5 = 0 và
d2: 3x + 4y – 5 = 0, đỉnh A( 2; 1). Diện tích của hình chữ nhật là:

A. 1.
B. 2
C. 3
D. 4

Lời giải

+ Nhận xét : điểm A không thuộc hai đường thẳng trên. ⇒ Độ dài hai cạnh kề của hình chữ nhật bằng khoảng cách từ A ( 2 ; 1 ) đến hai đường thẳng trên, do đó diện tích quy hoạnh quy hoạnh hình chữ nhật bằng

S = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 2 .

Chọn B.

Câu 1: Khoảng cách từ điểm M( 2;0) đến đường thẳng
Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
là:

A. 2
B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
D. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Hiển thị lời giải

Đáp án: A

Trả lời:

+ Ta đưa đường thẳng d về dạng tổng quát :

(d) : Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> Phương trình ( d ) : 4 ( x – 1 ) – 3 ( y – 2 ) = 0 hay 4 x – 3 y + 2 = 0. + Khi đó khoảng cách từ M đến d là :

d(M, d)= Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 2

Câu 2: Đường tròn ( C) có tâm I ( -2; -2) và tiếp xúc với đường thẳng

d: 5x + 12y – 10 = 0. Bán kính R của đường tròn ( C) bằng:

A. R = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
B. R = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
C. R = 44
D. R = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Hiển thị lời giải

Đáp án: A

Trả lời:

Do đường thẳng d tiếp xúc với đường tròn ( C ) nên khoảng cách từ tâm đường tròn ( C ) đến đường thẳng d chính là nửa đường kính đường tròn .

=> R = d(I; d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

Câu 3: Hai cạnh của hình chữ nhật nằm trên hai đường thẳng (a) : 4x – 3y + 5 = 0

(b) : 3x + 4y – 5 = 0. Biết hình chữ nhật có đỉnh A( 2 ;1). Diện tích của hình chữ nhật là:

A. 1
B. 2
C. 3
D. 4

Hiển thị lời giải

Đáp án: B

Trả lời:

Ta thấy : điểm A không thuộc hai đường thẳng trên. Độ dài hai cạnh kề của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng trên .

Độ dài 2 cạnh là: d( A; a) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 2; d(A; b) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 1

do đó diện tích quy hoạnh quy hoạnh hình chữ nhật bằng : S = 2.1 = 2

Câu 4: Cho hai điểm A( 2; -1) và B( 0; 100) ; C( 2; -4) .Tính diện tích tam giác ABC ?

A. 3
B. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
C. Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
D. 147

Hiển thị lời giải

Đáp án: A

Trả lời:

+ Phương trình đường thẳng AC: Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> Phương trình AC : 1 ( x – 2 ) + 0. ( y + 1 ) = 0 hay x – 2 = 0 ..

+ Độ dài AC = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 3 và khoảng cách từ B đến AC là:

d(B; AC) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 2

=> Diện tích tam giác ABC là : S = AC.d ( B ; AC ) =. 3.2 = 3 .

Câu 5: Khoảng cách từ A(3; 1) đến đường thẳng
Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
gần với số nào sau đây ?

A. 0, 85
B. 0,9
C. 0,95
D. 1

Hiển thị lời giải

Đáp án: B

Trả lời:

Ta đưa đường thẳng d về dạng tổng quát :

(d): Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> ( d ) : 2 ( x – 1 ) + 1 ( y – 3 ) = 0 hay 2 x + y – 5 = 0

=> d(A, d) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
≈ 0,894

Câu 6: Hai cạnh của hình chữ nhật nằm trên hai đường thẳng 4x – 3y + 5 = 0 và
3x + 4y + 5 = 0
đỉnh A(2; 1). Diện tích của hình chữ nhật là

A. 6
B. 2
C. 3
D. 4

Hiển thị lời giải

Đáp án: A

Trả lời:

+ Khoảng cách từ đỉnh A(2; 1) đến đường thẳng 4x – 3y + 5 = 0 là Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 2

+ Khoảng cách từ đỉnh A(2; 1) đến đường thẳng 3x + 4y + 5 = 0 là Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 3

=> Diện tích hình chữ nhật bằng 2.3 = 6

Câu 7: Tính diện tích hình bình hành ABCD biết A( 1; -2) ; B( 2; 0) và D( -1; 3)

A. 6
B. 4,5
C. 3
D. 9

Hiển thị lời giải

Đáp án: D

Trả lời:

+ Đường thẳng AB: Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> Phương trình AB : 2 ( x – 1 ) – 1 ( y + 2 ) = 0 hay 2 x – y – 4 = 0

+ độ dài đoạn AB: AB = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= √5

Khoảng cách từ D đến AB: d( D; AB)= Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10

=> Diện tích hình chữ nhật ABCD là S = AB.d( D; AB) = √5.Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 9

Câu 8: Tính khoảng cách từ giao điểm của hai đường thẳn (d) : x + y – 2 = 0 và

( ∆) : 2x + 3y – 5 = 0 đến đường thẳng (d’) : 3x – 4y + 11 = 0

A. 1
B. 2
C. 3
D. 4

Hiển thị lời giải

Đáp án: B

Trả lời:

+ Giao điểm A của hai đường thẳng d và ∆ là nghiệm hệ phương trình

Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
=> A( 1; 1)

+ Khoảng cách từ điểm A đến đường thẳng ( d ’ ) là :

d( A; d’) = Tính khoảng cách từ một điểm đến một đường thẳng - Toán lớp 10
= 2

Chuyên đề Toán 10 : khá không thiếu triết lý và các dạng bài tập có đáp án khác :

Giới thiệu kênh Youtube Tôi

Xem thêm : Khoảng cách từ 1 điểm đến Ox lớp 10
Trang trước Trang sau

Video liên quan

Dịch vụ liên quan

Thủ Dầu Một có gì chơi, có gì vui – Top 8 địa điểm du lịch ấn tượng – Vi Vu Xuyên Việt

Thành phố Thủ Dầu Một thuộc tỉnh Tỉnh Bình Dương là nơi có nhiều khu...

Các Địa Điểm Du Lịch Los Angeles Truyền Cảm Hứng – Klook Blog

Đã đến lúc ghi lại những địa điểm du lịch Los Angeles đầy sức hút,...

Du Lịch Mandalay: Có Gì Ở Thành Phố Lớn Thứ Nhì Myanmar? – Klook Blog

Bạn muốn khám phá những ngôi đền cổ kính, những lịch sử huy hoàng của...

Tham quan du lịch là gì? Các loại hình tham quan du lịch?

Tham quan du lịch là gì ? Các mô hình tham quan du lịch ?...

Điểm đến của du lịch quốc tế trong năm mới

Những “cơn mưa” giải thưởng quốc tế Nếu so với lượng khách quốc tế đạt...

Đặng hoàng giang điểm đến của cuộc đời?

GhimBạn đang đọc: Đặng hoàng giang điểm đến của cuộc đời? 0 Chia SẻBạn đang...
Alternate Text Gọi ngay