skkn suy nghĩ khi dạy ‘’công thức tính khoảng cách từ một điểm đến một đường thẳng” trong chương hình học lớp 10 cơ bản
Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (128.92 KB, 12 trang )
Bạn đang đọc: skkn suy nghĩ khi dạy ‘’công thức tính khoảng cách từ một điểm đến một đường – Tài liệu text
Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bảnI. LÝ DO CHỌN ĐỀ TÀI
Khi dạy bài “ Phương trình đường thẳng” trong chương trình hình học lớp
10 cơ bản, tôi thấy cách chứng minh “Công thức tính khoảng từ một điểm
đến một đường thẳng” ớ sách cơ bản hay hơn sách nâng cao.Trong quá trình
chứng minh công thức sách giáo khoa đã đưa ra một số kết quả quan trọng
không kém gì công thức tính khoảng cách, nhưng rất ít người nghĩ đến việc
sử dụng các kết quả này.Tôi đã và xem các kết quả đó như các công thức để
giải toán, khai thác các công thức, nhờ đó giúp cho học sinh có thêm các
phương pháp giải toán đơn giản và dễ hiểu.
II. NỘI DUNG
Trong mặt phẳng tọa độ Oxy cho đường thẳng có phương trình
ax + by + c = 0 và điểm M0(x0;y0). Khoảng cách từ điểm M0 đến đường ,
kí hiệu là d(M0, ), được tính bởi công thức d(M0, ) =ax 0 by0 c
a 2 b2.
A/ Tóm tắt chứng minh công thức của SGK:
Sách giáo khoa đã viết rất đầy đủ theo lược đồ sau:
1. Ký hiệu d(M0, ).
2. Chỉ ra d(M0, ) = M0H, với H là hình chiếu của điểm M0 trên .
3. Cách tìm hình chiếu H = �d ,với d là đường thẳng đi qua M0 và
vuông góc với .
r
�x x0 at
, với n(a; b) là vtpt của .�y y0 bt
+ Viết ptts của đường thằng d: �
+ Tọa độ giao điểm H ứng với giá trị tH của pt:
a x0 at H b( y0 bt H ) c 0+ Được t H
.
ax 0 by0 c
.
a2 b2Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
1Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bản+ Điểm H = x0 at H ; y0 bt H
4. d(M0, ) = M0H = (a 2 b2 )tH2 =
5. Kết luận: d(M0, ) =ax 0 by0 c
a 2 b2ax 0 by0 c
a 2 b2.
.
B/ Các kết quả cần được chốt lại thành công thức
Dựa trên các kết quả đã đưa ra, tôi chốt lại bốn công thức để áp dụng:
. tH ax 0 by0 c
a2 b2(1)
.
. H = x0 atH ; y0 bt H
uuuuurr
. M 0 H tH n
. d(M0, ) =(3)
(2)
.
.
ax 0 by0 c
a b
22
(4)
.
Các công thức trên sẽ giúp cho học sinh giái quyết một loạt các bài toán
phức tạp trở thành rất đơn giản và dễ hiểu.
C/ Cách áp dụng các công thức trên trong việc giải toán
Bài toán 1: Tính khoảng cách từ một điểm đến một đường thẳng bằng cách
áp dụng công thức.
�x 3t
,và điểm M(1;-2).
�y 5 4tVD 1: Trong mp tọa độ Oxy,cho đường thẳng : �
1) Tính d(M, )? Tính d(O, )?
2) Tính d(M,Ox)? Tính d(M,Oy)?3) Chứng tỏ rằng đường thẳng // ’: 8x – 6y + 2 = 0. Tính d( , ‘ )?
Giải: PTTQ của đường thẳng : 4 x 3 y 15 0 .
1) Áp dụng công thức (4) ta có:d(M, ) =4.1 3 2 15
42 ( 3) 2 1.
Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
2Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bản
4.0 3.o 15Và d(O, ) =
4 (3)
22
15
3.
5Vậy d(M, ) = 1 và d(MO, ) = 3.
2) .Ta có PTTQ của trục Ox là : y = 0.Áp dụng công thức (4) ta có:d(M,Ox) = 2 2 .
. Ta có PTTQ của trục Oy là: x = 0. Áp dụng công thức (4) ta có:
d(M,Oy) = 1 1 .
Vậy d(M,Ox) = 2 và d(M,Oy) = 1.
3) Nhận thấy / / ‘ vì4 3 15
�
. Và điểm A(0;5) � .
8 6
2
8.0 6.5 2Do đó d( , ‘ )= d(A, ‘ )=
82 (6) 2
28 28
10
10Nhận xét:
a) Các trường hợp đặc biệt của công thức (4):
* d(O, ) =c
a b2
2.
* d(M0,Ox) = y0 .
*d(M0,Oy) = x0 .
b) Nếu / / ‘ thì d( , ‘ )= d(A, ‘ )= d(B, ), với A � và B � ‘ .
Bài toán 2: Xét vị trí của hai điểm đối với một đường thẳng.
Cho đường thẳng : ax by c 0 và điểm A(x1;y1). Nếu A’ là hình chiếu của
uuuurr
A trên , áp dụng công thức (3) ta có: AA ‘ t A ‘ .n .
Áp dụng công thức (1) lại có: t A ‘ ax1 by1 c
.
a 2 b2Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
3Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bảnTương tự nếu có điểm B(x2;y2) với B’ là hình chiếu của B trên , ta cũng có:
tB ‘ ax 2 by2 c
.
a 2 b2Nhận thấy: – Nếu t A ‘ .t B ‘ p 0 thì A và B nằm khác phía nhau đối với .
– Nếu t A ‘ .t B ‘ f 0 thì A và B nằm cùng phía đối với .
Suy ra: – Nếu (ax1 by1 c ) (ax 2 by2 c) đối với .
– Nếu (ax1 by1 c ) (ax 2 by2 c) > 0 thì A và B nằm cùng phía đối với .
Nhận xét: Cho đường thẳng : ax by c 0 và hai điểm A(x1;y1), B(x2;y2).
-Nếu (ax1 by1 c) (ax 2 by2 c) -Nếu (ax1 by1 c) (ax 2 by2 c) > 0 thì A và B nằm cùng phía đối với .
VD 2:Trong mặt phẳng tọa độ Oxy cho đường thẳng : 3x 4 y 5 0 và hai
điểm A(-1;5), B(1;-3).
a) Chứng tỏ rằng 2 điểm A,B nằm về hai phía của đường thẳng .
b) Chứng tỏ rằng 2 điểm O, B nằm về cùng một phía của đường thẳng .
3 1 4.5 5�
3.1 4 3 5�
Giải: a) Nhận thấy �
�
��
�
� 0, do đó A và B nằm vềhai phía của đường thẳng .
3.1 4 3 5 �
b) Nhận thấy 3.0 4.0 5 �
�
� 0, do đó O và B nằm về cùngmột phía của đường thẳng .
Bài toán 3: Tìm hình chiếu của một điểm M(x0;y0) trên một đường thẳng
: ax by c 0 và tìm điểm đối xứng với điểm M qua đường thẳng .1/ Cách tìm hình chiếu:
Ngoài cách tìm như SGK đã trình bày còn cách tìm khác bằng cách áp
dụng các công thức (1) và (2) ở trên.Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
4Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bảnGọi H là hình chiếu của điểm M trên đường thẳng . Áp dụng công thức
(2) ta có tọa độ điểm H = x0 atH ; y0 bt H .
Áp dụng công thức (1) ta có t H ax 0 by0 c
.
a2 b22/ Cách tìm điểm đối xứng: Gọi M’là điểm đối xứng của M qua .
Cách 1: – Tìm hình chiếu H.
– H là trung điểm MM’.
uuuuuruuuur
r
r
Cách 2: Áp dụng công thức (3) ta có: MM ‘ 2 MH 2tH n, với n(a; b) .
Áp dụng công thức (1) ta có t H ax 0 by0 c
.
a2 b2VD 3:Trong mp tọa độ Oxy cho điểm M(-2;1) và đường thẳng
: 3x – 4y 5 0 .a) Tìm hình chiếu của điểm M trên đường thẳng .
b) Tìm điểm M’ đối xứng với M qua đường thẳng .
Giải:
a) Gọi H là hình chiếu của điểm M trên đường thẳng . Áp dụng công (2)
ta có tọa độ điểm H = 2 3t H ;1 4tH .
3(-2) – 4.1- 53
Mặt khác theo công thức (1) ta có t H 32 (4)2 5
3
3�
�
�1 7�
Do đó tọa độ điểm H = �2 3. ;1 4. �� H � ; �
5
5�
�
�5 5�b)Cách 1: Theo trên ta có H là trung điểm của MM’, suy ra tọa độ điểm M’:
8
�
xM ‘ 2 xH xM
�
8 19
�
5
� M ‘( ; ) .
�
5 5
�y 2 x y 19
M’
H
M
�
5
uuuuurXem thêm: So sánh ẩm thực Trung Quốc và Việt Nam
uuuur
r
r
Cách 2: Theo công thức (3) ta có MM ‘ 2MH 2tH n, với n (3; 4) .Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
5Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bản
3(-2) – 4.1- 53
Và theo công thức (1) ta có t H 32 (4)2 5
uuuuur18
�5�
Do đó ta có MM ‘ � ; 24 �
�. Suy ra tọa độ điểm M’:
5 �18
18
8
�
xM ‘ xM 2
�
�
5
5
5
�
�y 24 y 24 1 19
M
�M ‘
5
5
5
8
5Vậy điểm M ‘( ;
19
).
5Bài toán 4: Tìm tập hợp các điểm cách đều hai đường thẳng cho trước.
1/ Tìm tập hợp các điểm cách đều hai đường song song
: ax by c 0 và ‘ : ax by c ‘ 0, ( c �c ‘ )Phương pháp giải:
Gọi điểm M(x;y) cách đều hai đường thẳng. Áp dụng công thức (4) ta có:
d(M, )= d(M, ‘ ) �ax by c
a 2 b2=
ax by c ‘
a 2 b2� ax by c �(ax by c ‘) � ax by
c c’
0
2Nhận xét: Tập hợp các điểm cách đều hai đường song song : ax by c 0
và ‘ : ax by c ‘ 0 ( c �c ‘ ) là một đường thẳng song song với hai đường
thẳng cho trước có phương trình là: ax by c c’
0.
22/ Tìm tập hợp các điểm cách đều hai đường thẳng cắt nhau
Ta có tập hợp các điểm cách đều hai đường thẳng cắt nhau là đường thẳng
phân giác của các góc tạo bởi hai đường thằng đó.
Bài toán: Viết phương trình các đường phân giác của góc tạo bởi hai đường
thẳng cắt nhau : ax by c 0 và ‘ : a’x b ‘ y c ‘ 0 .Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
6Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bảnPhương pháp giải: Gọi điểm M(x;y) thuộc đường phân giác của góc tạo bởi
hai đường thẳng và ’ � d(M, )= d(M, ‘ )
�ax by c
�
a b
22
ax by c
a 2 b2=
a’x b ‘ y c ‘
a ‘2 b ‘2a’x b’ y c’
�
.
a ‘2 b ‘2Vậy phương trình các đường phân giác của góc tạo bởi hai đường thẳng là:
ax by c
a2 b2a’x b’ y c’
�
.
a ‘2 b ‘2Nhận xét: Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng cắt nhau
: ax by c 0 và ‘ : a’x b ‘ y c ‘ 0. Vậy phương trình các đường phângiác của góc tạo bởi hai đường thẳng là:
ax by c
a 2 b2a’x b’ y c’
�
.
a ‘2 b ‘2VD 4: Trong mặt phẳng tọa độ Oxy, cho các đường thẳng:
: 3x 4 y 1 0 ; ‘ : 4x 3 y 5 0 và “: 8 x 6 y 4 0 .1) Chứng tỏ ‘/ / “. Tìm tập hợp các điểm cách đều hai đường thẳng ‘, ” .
2) Chứng tỏ cắt ‘ .Viết phương trình các đường phân giác của góc tạo
bởi hai đường thẳng , ‘ .
Giải: 1) Ta có phương trình của “: 4 x 3 y 2 0 .Nhận thấy ‘/ / ” vì
4 3 5
�. Do đó tập hợp các điểm cách đều hai đường thẳng ‘, ” là đường
4 3 2
7
2thẳng (d): 4x + 3y 0
2) Gọi điểm M(x;y) thuộc đường phân giác của góc tạo bởi hai đường thẳng
và ’ � d(M, )= d(M, ‘ )
�3x 4 y 1
32 42=
4x 3 y 5
42 32
Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
7Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bản
x y40
�
� 3x + 4y -1 = �(4x + 3y – 5) � �
7x 7 y 4 0
�Vậy có hai đường phân giác cần tìm: x – y – 4 = 0 và 7x – 7y – 4 = 0.
C/ BÀI TẬP ÁP DỤNG:
Trên cơ sở các bài toán cơ bản, học sinh giải các bài toán lớn phức tạp hơn.
Bài 1: Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) vả B(0; -1) và
�x t
.
�y 2t 1đường thẳng (d): �
a) Tìm tọa độ hình chiếu H của điểm A trên dường thẳng (d).
b) Tìm điểm A’ đối xứng với A qua (d).
c) Tìm điểm M trên đường thẳng (d) sao cho: MA + MB nhỏ nhất.
Hướng dẫn giải: PTTQ của (d): 2x – y + 1 = 0.
�3 11 �
�.
�5 5 �a) Áp dụng công thức (1) và (2) tìm được hình chiếu H � ;
�3 11 �
�1 12 �
�là trung điểm của AA’. Suy ra A’ � ; �.�5 5 �
�5 5 �b)Theo kết quả câu a): H � ;
c)+ Nhận xét vị trí của A và B đối với (d).
Nhận thấy A và B nằm cùng phía đối với (d).
�1 12 �
�đối xứng với A qua (d).
�5 5 �+ Theo trên ta có điểm A’ � ;
Với điểm M � (d) ta có MA = MA’.Do đó MA + MB = MA’+MB �A ‘ B .
Dấu đẳng thức xảy ra khi A’,M, B thẳng hàng � Min (MA + MB) =AB’ �
M A ‘ B �(d ) .+ Viết phương trình đường thẳng A’B:
Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
8Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bản
uuuur1
�5�
Ta có A ‘ B � ; 17 �
�� Đường thẳng A’B có một véc tơ chỉ phương
5�uuur
�x t
u A ‘ B (1;17). Do đó ptts của A’B là: �
�y 1 17t
� 2
x
�
x
t
;
y
1
17
t
�
� 15
��
+ Tìm giao điểm M: Giải hệ pt: �2x y 1 0
�
�y 19
� 15
2 19�
�
Vậy điểm M � ; �.
15 15 �
�Bài 2: Trong mặt phẳng tọa độ Oxy, xác định phương trình đường thẳng
(d’) đối xứng với đường thẳng (d) qua đường thẳng (d”):
a) (d): 4x – y + 3 = 0 và (d”): x – y = 0.
b) (d): 6x – 3y + 4 = 0 và (d”): 4x – 2y +3 = 0.
Giải:
a) Nhận thấy hai đường thẳng (d) � (d”) = M(-1;-1).
+Lấy điểm A(0;3) �(d).Tìm điểm A’ đối xứng với A qua (d”), được
A’(3;0).
+ Viết pt đường thẳng (d’) đi qua hai điểm M, A’:
(d’): x – 4y – 3 = 0.
b) Ta có pt của hai đường thẳng (d):2x – y +4
3
= 0 và (d”): 2x – y + = 0
3
2Nhận thấy hai đường thẳng (d) // (d”). Do đó đường thẳng (d’)cần tìm
song song với hai đường thẳng (d) và (d”), và (d”) cách đều (d) và(d’).
5
3Suy ra pt (d’): 2x – y + = 0.
Nhận xét: Viết phương trình đường thẳng (d’) đối xứng với đường thẳng (d)
qua đường thẳng (d1).
Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
9Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bảnTrường hợp 1: (d) � (d1)= M.
+ Tìm tọa độ điểm M.
+ Lấy điểm A �(d). Xác định tọa độ điểm A’ đối xứng với A qua (d1).
+ Viết pt đường thẳng (d’) đi qua hai điểm M và A’.
Trường hợp 2:(d) // (d1).
+ Viết pt (d) và (d1) về dạng: (d): ax + by + c = 0; (d1): ax + by + c1= 0.
+ Pt (d’) : ax + by + c’ = 0, với c’ = 2c1- c.
Bài 3:Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng (d’) đối
xứng với đường thẳng (d): x – 2y + 2 = 0 qua điểm M(1;1).
Giải: Đường thẳng (d’)//(d). Suy ra phương trình của (d’): x – 2y + c = 0,
c2�
c �2. Và d(M,(d)) = d(M,(d’)) � c 1 1 � �
.
c0
�Loại c = 2, nhận c = 0. Vậy phương trình (d’): x – 2y = 0.
Nhận xét: viết phương trình đường thẳng (d’) đối xứng với đường thẳng (d)
qua điểm M(x0;y0) có rất nhiều cách viết, ở ví dụ này tôi hướng dẫn học sinh
cách giải sử dụng công thức tính khoảng cách.
Bài 4: Viết phương trình đường phân giác trong và phân giác ngoài của góc
A của tam giác ABC, có ba cạnh có phương trình là:
AB: 3x – 4y = 0; AC: 4x – 3y = 0; BC: 5x + 12y – 101 = 0.
Hướng dẫn giải: – Viết pt các đường phân giác của góc tạo bởi hai đường
thẳng AB và AC.
– Tìm tọa độ hai điểm B và C; B = AB �BC, C AC �BC .
– Lấy một đường phân giác và xét vị trí của hai điểm B và C đối với
đường thẳng đó.
– KL:+ nếu B,C nằm cùng phía đối với đường thẳng thì đó là phân
giác ngoài, suy ra đường còn lại là đường phân giác trong.
Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
10Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bản+ nếu B,C nằm khác phía nhau đối với đường thẳng thì đó là
phân giác trong, suy ra đường còn lại là đường phân giác ngoài.III. KẾT QUẢ THỰC HIỆN.
Trong quá trình giảng dạy ở lớp 10C1 trường PTTH Tô Hiến Thành thành
phố Thanh Hóa,tôi đã dạy và sử dụng các công thức (1),(2), (3),(4) vào việc
giải toán như trên.Kết quả là học sinh thấy dễ hiểu và làm rất tốt.
Ví dụ để tìm hình chiếu của một điểm trên một đường thẳng thì học sinh chỉ
cần nhớ hai công thức (1),(2),nó dễ hơn cách mà SGK đã trình bày rất nhiều.
Khi đã có bốn công thức trong tay thì việc giải các dạng toán như đã đưa ra
ở trên đối với học sinh lớp 10C1 trở thành đơn giản.
Và theo tôi bằng phép tương tự khi chứng minh “công thức tính khoảng cách
từ một điểm đến một mặt phẳng” trong hình học không gian lớp 12 ta có bốn
công thức tương tự:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( ) có phương trình
Ax + By +Cz + D= 0 và điểm M0(x0;y0).Gọi H là hình chiếu của điểm M0
trên mp ( ), ta có:
. tH Ax 0 By0 Cz D
A2 B 2 C 2(1)
.
. H = x0 At H ; y0 Bt H ; z0 Ct H
uuuuurr
. M 0 H tH n
(3)
. d(M0, ( ) ) =
(2)
.
r
, với n( A; B; C )
Ax 0 By0 Cz0 D
A B C
22
2
(4)
.
Từ các công thức này ta cũng giải quyết một loạt các bài toán tương tự trong
không gian rất đơn giản và dễ hiểu.
Đó là suy nghĩ và cách dạy của tôi khi dạy phần “công thức tính khoảng
cách từ một điểm đến một đường thẳng” trong chương trình hình học lớp 10
cơ bản. Tôi rất mong được sự đóng góp ý kiến của các đồng nghiệp.
Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
11
Suy nghĩ khi dạy ‘’Công thức tính khoảng cách từ một điểm đến một đường thẳng” trong
chương hình học lớp 10 cơ bản
Tôi chân thành cảm ơn.
Thanh hóa, tháng 5 năm 2011.
Sáng kiến kinh nghiệm môn toán năm học 2010-2011.
Trịnh Thị Thủy giáo viên trường THPT Tô Hiến Thành thành phố Thanh hóa.
12
� y y0 bt + Viết ptts của đường thằng d : � + Tọa độ giao điểm H ứng với giá trị tH của pt : a x0 at H b ( y0 bt H ) c 0 + Được t H ax 0 by0 ca2 b2Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. Suy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bản + Điểm H = x0 at H ; y0 bt H 4. d ( M0, ) = M0H = ( a 2 b2 ) tH2 = 5. Kết luận : d ( M0, ) = ax 0 by0 ca 2 b2ax 0 by0 ca 2 b2B / Các hiệu quả cần được chốt lại thành công xuất sắc thứcDựa trên các hiệu quả đã đưa ra, tôi chốt lại bốn công thức để vận dụng :. tH ax 0 by0 ca2 b2 ( 1 ). H = x0 atH ; y0 bt H uuuuur. M 0 H tH n. d ( M0, ) = ( 3 ) ( 2 ) ax 0 by0 ca b ( 4 ) Các công thức trên sẽ giúp cho học viên giái quyết một loạt các bài toánphức tạp trở thành rất đơn thuần và dễ hiểu. C / Cách vận dụng các công thức trên trong việc giải toánBài toán 1 : Tính khoảng cách từ một điểm đến một đường thẳng bằng cácháp dụng công thức. � x 3 t, và điểm M ( 1 ; – 2 ). � y 5 4 tVD 1 : Trong mp tọa độ Oxy, cho đường thẳng : � 1 ) Tính d ( M, ) ? Tính d ( O, ) ? 2 ) Tính d ( M, Ox ) ? Tính d ( M, Oy ) ? 3 ) Chứng tỏ rằng đường thẳng / / ’ : 8 x – 6 y + 2 = 0. Tính d ( , ‘ ) ? Giải : PTTQ của đường thẳng : 4 x 3 y 15 0. 1 ) Áp dụng công thức ( 4 ) ta có : d ( M, ) = 4.1 3 2 1542 ( 3 ) 2 1. Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. Suy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bản4. 0 3. o 15V à d ( O, ) = 4 ( 3 ) 15 3. Vậy d ( M, ) = 1 và d ( MO, ) = 3.2 ). Ta có PTTQ của trục Ox là : y = 0. Áp dụng công thức ( 4 ) ta có : d ( M, Ox ) = 2 2 .. Ta có PTTQ của trục Oy là : x = 0. Áp dụng công thức ( 4 ) ta có : d ( M, Oy ) = 1 1. Vậy d ( M, Ox ) = 2 và d ( M, Oy ) = 1.3 ) Nhận thấy / / ‘ vì4 3 15. Và điểm A ( 0 ; 5 ) � . 8 68.0 6.5 2D o đó d ( , ‘ ) = d ( A, ‘ ) = 82 ( 6 ) 2 28 281010N hận xét : a ) Các trường hợp đặc biệt quan trọng của công thức ( 4 ) : * d ( O, ) = a b2 * d ( M0, Ox ) = y0. d ( M0, Oy ) = x0. b ) Nếu / / ‘ thì d ( , ‘ ) = d ( A, ‘ ) = d ( B, ), với A � và B � ‘. Bài toán 2 : Xét vị trí của hai điểm so với một đường thẳng. Cho đường thẳng : ax by c 0 và điểm A ( x1 ; y1 ). Nếu A ’ là hình chiếu củauuuurA trên , vận dụng công thức ( 3 ) ta có : AA ‘ t A ‘. n. Áp dụng công thức ( 1 ) lại có : t A ‘ ax1 by1 ca 2 b2Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. Suy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bảnTương tự nếu có điểm B ( x2 ; y2 ) với B ’ là hình chiếu của B trên , ta cũng có : tB ‘ ax 2 by2 ca 2 b2Nhận thấy : – Nếu t A ‘. t B ‘ p 0 thì A và B nằm khác phía nhau so với . – Nếu t A ‘. t B ‘ f 0 thì A và B nằm cùng phía so với . Suy ra : – Nếu ( ax1 by1 c ) ( ax 2 by2 c ) 0 thì A và B nằm cùng phía so với . Nhận xét : Cho đường thẳng : ax by c 0 và hai điểm A ( x1 ; y1 ), B ( x2 ; y2 ). – Nếu ( ax1 by1 c ) ( ax 2 by2 c ) 0 thì A và B nằm cùng phía so với . VD 2 : Trong mặt phẳng tọa độ Oxy cho đường thẳng : 3 x 4 y 5 0 và haiđiểm A ( – 1 ; 5 ), B ( 1 ; – 3 ). a ) Chứng tỏ rằng 2 điểm A, B nằm về hai phía của đường thẳng . b ) Chứng tỏ rằng 2 điểm O, B nằm về cùng một phía của đường thẳng . 3 1 4.5 5 � 3.1 4 3 5 � Giải : a ) Nhận thấy � � � � 0, do đó A và B nằm vềhai phía của đường thẳng . 3.1 4 3 5 � b ) Nhận thấy 3.0 4.0 5 � � 0, do đó O và B nằm về cùngmột phía của đường thẳng . Bài toán 3 : Tìm hình chiếu của một điểm M ( x0 ; y0 ) trên một đường thẳng : ax by c 0 và tìm điểm đối xứng với điểm M qua đường thẳng . 1 / Cách tìm hình chiếu : Ngoài cách tìm như SGK đã trình diễn còn cách tìm khác bằng cách ápdụng các công thức ( 1 ) và ( 2 ) ở trên. Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. Suy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bảnGọi H là hình chiếu của điểm M trên đường thẳng . Áp dụng công thức ( 2 ) ta có tọa độ điểm H = x0 atH ; y0 bt H . Áp dụng công thức ( 1 ) ta có t H ax 0 by0 ca2 b22 / Cách tìm điểm đối xứng : Gọi M’là điểm đối xứng của M qua . Cách 1 : – Tìm hình chiếu H. – H là trung điểm MM ’. uuuuuruuuurCách 2 : Áp dụng công thức ( 3 ) ta có : MM ‘ 2 MH 2 tH n, với n ( a ; b ). Áp dụng công thức ( 1 ) ta có t H ax 0 by0 ca2 b2VD 3 : Trong mp tọa độ Oxy cho điểm M ( – 2 ; 1 ) và đường thẳng : 3 x – 4 y 5 0. a ) Tìm hình chiếu của điểm M trên đường thẳng . b ) Tìm điểm M ’ đối xứng với M qua đường thẳng . Giải : a ) Gọi H là hình chiếu của điểm M trên đường thẳng . Áp dụng công ( 2 ) ta có tọa độ điểm H = 2 3 t H ; 1 4 tH . 3 ( – 2 ) – 4.1 – 5M ặt khác theo công thức ( 1 ) ta có t H 32 ( 4 ) 2 53 � � 1 7 � Do đó tọa độ điểm H = � 2 3. ; 1 4. � � H � ; � 5 � � 5 5 � b ) Cách 1 : Theo trên ta có H là trung điểm của MM ’, suy ra tọa độ điểm M ’ : xM ‘ 2 xH xM 8 19 � M ‘ ( ; ). 5 5 � y 2 x y 19M ‘ uuuuuruuuurCách 2 : Theo công thức ( 3 ) ta có MM ‘ 2MH 2 tH n, với n ( 3 ; 4 ). Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. Suy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bản3 ( – 2 ) – 4.1 – 5V à theo công thức ( 1 ) ta có t H 32 ( 4 ) 2 5 uuuuur18 � 5D o đó ta có MM ‘ � ; 24 � �. Suy ra tọa độ điểm M ’ : 5 � 1818 xM ‘ xM 2 � y 24 y 24 1 19 � M ‘ Vậy điểm M ‘ ( ; 19 ). Bài toán 4 : Tìm tập hợp các điểm cách đều hai đường thẳng cho trước. 1 / Tìm tập hợp các điểm cách đều hai đường song song : ax by c 0 và ‘ : ax by c ‘ 0, ( c � c ‘ ) Phương pháp giải : Gọi điểm M ( x ; y ) cách đều hai đường thẳng. Áp dụng công thức ( 4 ) ta có : d ( M, ) = d ( M, ‘ ) � ax by ca 2 b2ax by c ‘ a 2 b2 � ax by c � ( ax by c ‘ ) � ax by c c ‘ 0N hận xét : Tập hợp các điểm cách đều hai đường song song : ax by c 0 và ‘ : ax by c ‘ 0 ( c � c ‘ ) là một đường thẳng song song với hai đườngthẳng cho trước có phương trình là : ax by c c ‘ 0.2 / Tìm tập hợp các điểm cách đều hai đường thẳng cắt nhauTa có tập hợp các điểm cách đều hai đường thẳng cắt nhau là đường thẳngphân giác của các góc tạo bởi hai đường thằng đó. Bài toán : Viết phương trình các đường phân giác của góc tạo bởi hai đườngthẳng cắt nhau : ax by c 0 và ‘ : a’x b ‘ y c ‘ 0. Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. Suy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bảnPhương pháp giải : Gọi điểm M ( x ; y ) thuộc đường phân giác của góc tạo bởihai đường thẳng và ’ � d ( M, ) = d ( M, ‘ ) ax by ca bax by ca 2 b2a ‘ x b ‘ y c ‘ a ‘ 2 b ‘ 2 a’x b ‘ y c ‘ � a ‘ 2 b ‘ 2V ậy phương trình các đường phân giác của góc tạo bởi hai đường thẳng là : ax by ca2 b2a ‘ x b ‘ y c ‘ � a ‘ 2 b ‘ 2N hận xét : Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng cắt nhau : ax by c 0 và ‘ : a’x b ‘ y c ‘ 0. Vậy phương trình các đường phângiác của góc tạo bởi hai đường thẳng là : ax by ca 2 b2a ‘ x b ‘ y c ‘ � a ‘ 2 b ‘ 2VD 4 : Trong mặt phẳng tọa độ Oxy, cho các đường thẳng : : 3 x 4 y 1 0 ; ‘ : 4 x 3 y 5 0 và ” : 8 x 6 y 4 0. 1 ) Chứng tỏ ‘ / / “. Tìm tập hợp các điểm cách đều hai đường thẳng ‘, “. 2 ) Chứng tỏ cắt ‘. Viết phương trình các đường phân giác của góc tạobởi hai đường thẳng , ‘. Giải : 1 ) Ta có phương trình của ” : 4 x 3 y 2 0. Nhận thấy ‘ / / ” vì4 3 5 �. Do đó tập hợp các điểm cách đều hai đường thẳng ‘, ” là đường4 3 2 thẳng ( d ) : 4 x + 3 y 02 ) Gọi điểm M ( x ; y ) thuộc đường phân giác của góc tạo bởi hai đường thẳng và ’ � d ( M, ) = d ( M, ‘ ) 3 x 4 y 132 424 x 3 y 542 3S áng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. Suy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bảnx y 4 0 � 3 x + 4 y – 1 = � ( 4 x + 3 y – 5 ) � � 7 x 7 y 4 0V ậy có hai đường phân giác cần tìm : x – y – 4 = 0 và 7 x – 7 y – 4 = 0. C / BÀI TẬP ÁP DỤNG : Trên cơ sở các bài toán cơ bản, học viên giải các bài toán lớn phức tạp hơn. Bài 1 : Trong mặt phẳng tọa độ Oxy, cho hai điểm A ( 1 ; 2 ) vả B ( 0 ; – 1 ) và � x t � y 2 t 1 đường thẳng ( d ) : � a ) Tìm tọa độ hình chiếu H của điểm A trên dường thẳng ( d ). b ) Tìm điểm A ’ đối xứng với A qua ( d ). c ) Tìm điểm M trên đường thẳng ( d ) sao cho : MA + MB nhỏ nhất. Hướng dẫn giải : PTTQ của ( d ) : 2 x – y + 1 = 0. � 3 11 � �. � 5 5 � a ) Áp dụng công thức ( 1 ) và ( 2 ) tìm được hình chiếu H � ; � 3 11 � � 1 12 � � là trung điểm của AA ’. Suy ra A ’ � ; �. � 5 5 � � 5 5 � b ) Theo tác dụng câu a ) : H � ; c ) + Nhận xét vị trí của A và B so với ( d ). Nhận thấy A và B nằm cùng phía so với ( d ). � 1 12 � � đối xứng với A qua ( d ). � 5 5 � + Theo trên ta có điểm A ’ � ; Với điểm M � ( d ) ta có MA = MA ’. Do đó MA + MB = MA ’ + MB � A ‘ B. Dấu đẳng thức xảy ra khi A ’, M, B thẳng hàng � Min ( MA + MB ) = AB ’ � M A ‘ B � ( d ). + Viết phương trình đường thẳng A’B : Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. Suy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bảnuuuur � 5T a có A ‘ B � ; 17 � � � Đường thẳng A’B có một véc tơ chỉ phương5 � uuur � x tu A ‘ B ( 1 ; 17 ). Do đó ptts của A’B là : � � y 1 17 t � 2 x 17 � 15 � � + Tìm giao điểm M : Giải hệ pt : � 2 x y 1 0 � y 19 � 152 19V ậy điểm M � ; �. 15 15 � Bài 2 : Trong mặt phẳng tọa độ Oxy, xác lập phương trình đường thẳng ( d ’ ) đối xứng với đường thẳng ( d ) qua đường thẳng ( d ” ) : a ) ( d ) : 4 x – y + 3 = 0 và ( d ” ) : x – y = 0. b ) ( d ) : 6 x – 3 y + 4 = 0 và ( d ” ) : 4 x – 2 y + 3 = 0. Giải : a ) Nhận thấy hai đường thẳng ( d ) � ( d ” ) = M ( – 1 ; – 1 ). + Lấy điểm A ( 0 ; 3 ) � ( d ). Tìm điểm A ’ đối xứng với A qua ( d ” ), đượcA ’ ( 3 ; 0 ). + Viết pt đường thẳng ( d ’ ) đi qua hai điểm M, A ’ : ( d ’ ) : x – 4 y – 3 = 0. b ) Ta có pt của hai đường thẳng ( d ) : 2 x – y + = 0 và ( d ” ) : 2 x – y + = 0N hận thấy hai đường thẳng ( d ) / / ( d ” ). Do đó đường thẳng ( d ’ ) cần tìmsong tuy nhiên với hai đường thẳng ( d ) và ( d ” ), và ( d ” ) cách đều ( d ) và ( d ’ ). Suy ra pt ( d ’ ) : 2 x – y + = 0. Nhận xét : Viết phương trình đường thẳng ( d ’ ) đối xứng với đường thẳng ( d ) qua đường thẳng ( d1 ). Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. Suy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bảnTrường hợp 1 : ( d ) � ( d1 ) = M. + Tìm tọa độ điểm M. + Lấy điểm A � ( d ). Xác định tọa độ điểm A ’ đối xứng với A qua ( d1 ). + Viết pt đường thẳng ( d ’ ) đi qua hai điểm M và A ’. Trường hợp 2 : ( d ) / / ( d1 ). + Viết pt ( d ) và ( d1 ) về dạng : ( d ) : ax + by + c = 0 ; ( d1 ) : ax + by + c1 = 0. + Pt ( d ’ ) : ax + by + c ’ = 0, với c ’ = 2 c1 – c. Bài 3 : Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng ( d ’ ) đốixứng với đường thẳng ( d ) : x – 2 y + 2 = 0 qua điểm M ( 1 ; 1 ). Giải : Đường thẳng ( d ’ ) / / ( d ). Suy ra phương trình của ( d ’ ) : x – 2 y + c = 0, c 2 c � 2. Và d ( M, ( d ) ) = d ( M, ( d ’ ) ) � c 1 1 � � c 0L oại c = 2, nhận c = 0. Vậy phương trình ( d ’ ) : x – 2 y = 0. Nhận xét : viết phương trình đường thẳng ( d ’ ) đối xứng với đường thẳng ( d ) qua điểm M ( x0 ; y0 ) có rất nhiều cách viết, ở ví dụ này tôi hướng dẫn học sinhcách giải sử dụng công thức tính khoảng cách. Bài 4 : Viết phương trình đường phân giác trong và phân giác ngoài của gócA của tam giác ABC, có ba cạnh có phương trình là : AB : 3 x – 4 y = 0 ; AC : 4 x – 3 y = 0 ; BC : 5 x + 12 y – 101 = 0. Hướng dẫn giải : – Viết pt các đường phân giác của góc tạo bởi hai đườngthẳng AB và AC. – Tìm tọa độ hai điểm B và C ; B = AB � BC, C AC � BC. – Lấy một đường phân giác và xét vị trí của hai điểm B và C đối vớiđường thẳng đó. – KL : + nếu B, C nằm cùng phía so với đường thẳng thì đó là phângiác ngoài, suy ra đường còn lại là đường phân giác trong. Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. 10S uy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bản + nếu B, C nằm khác phía nhau so với đường thẳng thì đó làphân giác trong, suy ra đường còn lại là đường phân giác ngoài. III. KẾT QUẢ THỰC HIỆN.Trong quy trình giảng dạy ở lớp 10C1 trường PTTH Tô Hiến Thành thànhphố Thanh Hóa, tôi đã dạy và sử dụng các công thức ( 1 ), ( 2 ), ( 3 ), ( 4 ) vào việcgiải toán như trên. Kết quả là học viên thấy dễ hiểu và làm rất tốt. Ví dụ để tìm hình chiếu của một điểm trên một đường thẳng thì học viên chỉcần nhớ hai công thức ( 1 ), ( 2 ), nó dễ hơn cách mà SGK đã trình diễn rất nhiều. Khi đã có bốn công thức trong tay thì việc giải các dạng toán như đã đưa raở trên so với học viên lớp 10C1 trở thành đơn thuần. Và theo tôi bằng phép tương tự như khi chứng tỏ “ công thức tính khoảng cáchtừ một điểm đến một mặt phẳng ” trong hình học khoảng trống lớp 12 ta có bốncông thức tương tự như : Trong khoảng trống với hệ tọa độ Oxyz, cho mặt phẳng ( ) có phương trìnhAx + By + Cz + D = 0 và điểm M0 ( x0 ; y0 ). Gọi H là hình chiếu của điểm M0trên mp ( ), ta có :. tH Ax 0 By0 Cz DA2 B 2 C 2 ( 1 ). H = x0 At H ; y0 Bt H ; z0 Ct H uuuuur. M 0 H tH n ( 3 ). d ( M0, ( ) ) = ( 2 ), với n ( A ; B ; C ) Ax 0 By0 Cz0 DA B C ( 4 ) Từ các công thức này ta cũng xử lý một loạt các bài toán tương tự như trongkhông gian rất đơn thuần và dễ hiểu. Đó là tâm lý và cách dạy của tôi khi dạy phần “ công thức tính khoảngcách từ một điểm đến một đường thẳng ” trong chương trình hình học lớp 10 cơ bản. Tôi rất mong được sự góp phần quan điểm của các đồng nghiệp. Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. 11S uy nghĩ khi dạy ‘ ’ Công thức tính khoảng cách từ một điểm đến một đường thẳng ” trongchương hình học lớp 10 cơ bảnTôi chân thành cảm ơn. Thanh hóa, tháng 5 năm 2011. Sáng kiến kinh nghiệm tay nghề môn toán năm học 2010 – 2011. Trịnh Thị Thủy giáo viên trường trung học phổ thông Tô Hiến Thành thành phố Thanh hóa. 12
Source: https://dichvusuachua24h.com
Category : Du Lịch